Você está correto que a tabela user_stats é uma tabela estática que resume as métricas de vida de um usuário desde que ele ingressou no Discourse.
Em vez disso, para filtrar métricas por data, como posts_read_count e days_visited, usaríamos a tabela de banco de dados user_visits para posts. Também usaríamos a tabela topic_views para filtrar as métricas topics_entered por data.
As discrepâncias que você observou surgem do uso da tabela user_stats em vez de outras tabelas como user_visits e topic_views para filtrar essas estatísticas por data.
Para resolver isso, podemos atualizar a consulta para usar essas tabelas de banco de dados em vez disso:
Aqui está uma versão atualizada da consulta:
Métricas da Página do Usuário
-- [params]
-- date :start_date = 2020-01-01
-- date :end_date = 2026-01-01
WITH likes_received AS (
SELECT
ua.user_id AS user_id,
COUNT(*) AS likes_received
FROM
user_actions ua
WHERE
ua.action_type = 2
AND ua.created_at BETWEEN :start_date AND :end_date
GROUP BY
ua.user_id
),
likes_given AS (
SELECT
ua.acting_user_id AS user_id,
COUNT(*) AS likes_given
FROM
user_actions ua
WHERE
ua.action_type = 1
AND ua.created_at BETWEEN :start_date AND :end_date
GROUP BY
ua.acting_user_id
),
user_metrics AS (
SELECT
tv.user_id,
COUNT(DISTINCT tv.topic_id) AS topics_viewed
FROM
topic_views tv
WHERE
tv.viewed_at BETWEEN :start_date AND :end_date
GROUP BY
tv.user_id
),
days_and_posts AS (
SELECT
uv.user_id,
COUNT(DISTINCT uv.visited_at) AS days_visited,
SUM(uv.posts_read) AS posts_read
FROM
user_visits uv
WHERE
uv.visited_at BETWEEN :start_date AND :end_date
GROUP BY
uv.user_id
),
solutions AS (
SELECT
ua.acting_user_id AS user_id,
COUNT(*) AS solutions
FROM
user_actions ua
WHERE
ua.action_type = 15
AND ua.created_at BETWEEN :start_date AND :end_date
GROUP BY
ua.acting_user_id
),
cheers AS (
SELECT
gs.user_id,
SUM(gs.score) AS cheers
FROM
gamification_scores gs
WHERE
gs.date BETWEEN :start_date AND :end_date
GROUP BY
gs.user_id
)
SELECT
u.id AS user_id,
COALESCE(lr.likes_received, 0) AS likes_received,
COALESCE(lg.likes_given, 0) AS likes_given,
COALESCE(um.topics_viewed, 0) AS topics_viewed,
COALESCE(dp.days_visited, 0) AS days_visited,
COALESCE(dp.posts_read, 0) AS posts_read,
COALESCE(sol.solutions, 0) AS solutions,
COALESCE(ch.cheers, 0) AS cheers
FROM
users u
LEFT JOIN
likes_received lr ON u.id = lr.user_id
LEFT JOIN
likes_given lg ON u.id = lg.user_id
LEFT JOIN
user_metrics um ON u.id = um.user_id
LEFT JOIN
days_and_posts dp ON u.id = dp.user_id
LEFT JOIN
solutions sol ON u.id = sol.user_id
LEFT JOIN
cheers ch ON u.id = ch.user_id
ORDER BY
u.id
Note que com este método, os dados de posts_read na tabela user_visits têm uma distinção importante: não contam os posts do próprio usuário, enquanto os dados da tabela user_stats incluem posts de autoria própria, então você ainda pode encontrar uma diferença entre essas duas estatísticas nesta consulta e na Página do Usuário.