Olá, você pode fazer esta atualização funcionar para o Azure também?
O conserto do Falco deve funcionar para os endpoints do Azure e da OpenAI. Eles passam pelo mesmo código. Para sua informação, você precisa habilitar o enable_responses_api.
Infelizmente, esta configuração não aparece após selecionar o Azure como provedor.
Desculpe pela demora. Adicionei as opções específicas do provedor aqui:
Ele suporta Vertex AI no GCP?
Você tentou usando OpenAI compatibility | Generative AI on Vertex AI | Google Cloud?
Obrigado por relatar. Foi perdido durante uma edição em junho. Algumas partes da primeira postagem estão ocultas em comentários HTML, e acho que notei o editor WYSIWYG quebrando isso durante uma edição anterior. Mas houve muitas atualizações desde que a edição aconteceu, então pode já ter sido corrigido.
Estou tentando descobrir qualquer coisa sobre o recurso de IA do Discord, mas sou completamente incapaz de encontrar alguma coisa
Como funciona? ou o que ele pode fazer? Estou falando da busca do Discord.
sim sim sim, eu ADORARIA isso.
Estamos pensando em adicionar assinaturas apenas para ter acesso a recursos de IA. Mas ter acesso escalonado à IA seria ainda melhor! Obrigado pela sugestão.
Encontrei um bug (e criei um PR para corrigi-lo) ao tentar usar o Discord Persona Bot
Job exception: context must be an instance of BotContext
/var/www/discourse/plugins/discourse-ai/lib/personas/bot.rb:55:in `reply'
/var/www/discourse/plugins/discourse-ai/lib/discord/bot/persona_replier.rb:25:in `handle_interaction!'
/var/www/discourse/plugins/discourse-ai/app/jobs/regular/stream_discord_reply.rb:13:in `execute'
O DeepSeek terá suporte quando? É um LLM desenvolvido por uma empresa de tecnologia chinesa e é relativamente barato.
Obrigado.![]()
Já é suportado, você tentou alguma funcionalidade nele que não funcionou?
最近马斯克开源了推特推荐算法,能否在这个插件实现?
以下是某个论坛用户写的油猴脚本实现推特推荐算法,理论上是用于任何discourse论坛:
// ==UserScript==
// @name *** Algorithm
// @namespace http://tampermonkey.net/
// @version 0.9
// @description 融合 X 算法和 DeepSeek AI 的智能推荐系统,提供个性化主题推荐
// @author ***
// @match ****
// @grant GM_xmlhttpRequest
// @grant GM_setValue
// @grant GM_getValue
// @grant GM_addStyle
// @connect 2c2ch1u11-share-api-0.hf.space
// ==/UserScript==
(function() {
'use strict';
const API_KEY = '***';
const API_URL = '***/v1/chat/completions';
const MODEL = 'deepseek-chat';
// ========== 算法配置参数(可调整优化) ==========
const CONFIG = {
// X 算法权重参数
WEIGHT_LIKES: 0.5,
WEIGHT_REPLIES: 13.5,
WEIGHT_VIEWS: 0.015,
PINNED_BOOST: 2.0,
TIME_DECAY_FACTOR: 1.5,
TIME_DECAY_OFFSET: 2,
// 评分最大值参数
X_SCORE_MAX: 45,
AI_SCORE_MAX: 55,
// 评分阈值参数
MAX_SCORE: 100,
MIN_DISPLAY_SCORE: 20,
// 缓存参数
PROFILE_CACHE_TTL: 86400000, // 用户画像缓存:24小时
TOPIC_SCORE_CACHE_TTL: 3600000, // 单个主题AI评分缓存:1小时
// API 参数
MAX_TOPICS_PER_BATCH: 30,
MAX_LIKED_TITLES: 15, // 点赞主题数量
MAX_REPLIED_TITLES: 10, // 回复主题数量
MAX_CREATED_TITLES: 5, // 创建主题数量
API_RETRY_COUNT: 2,
API_RETRY_DELAY: 1000,
// 用户画像分析维度
PROFILE_CATEGORIES: ['技术兴趣', '内容偏好', '互动习惯', '专业领域', '阅读深度'],
};
let isRecommendMode = false;
let scoreMap = {};
let allTopicsData = {};
let sortTimeout = null;
let userProfile = "";
let isLoading = false;
let isProcessingNewTopics = false;
// ========== CSS 样式 ==========
GM_addStyle(`
.nav-pills > li > a,
.nav-pills > li.ember-view > a,
.navigation-container .nav-pills > li > a {
border-bottom: 3px solid transparent !important;
transition: all 0.2s ease;
}
body.recommend-mode-active .nav-pills > li:not(#nav-item-recommend) > a,
body.recommend-mode-active .nav-pills > li.ember-view:not(#nav-item-recommend) > a,
body.recommend-mode-active .navigation-container .nav-pills > li:not(#nav-item-recommend) > a {
color: var(--primary-medium) !important;
border-bottom-color: transparent !important;
}
.nav-pills li#nav-item-recommend.active > a,
body.recommend-mode-active .nav-pills li#nav-item-recommend > a {
color: var(--tertiary) !important;
border-bottom: 3px solid var(--tertiary) !important;
font-weight: 600;
}
.nav-pills li#nav-item-recommend > a:hover {
color: var(--tertiary) !important;
opacity: 0.8;
}
.recommend-loading-container {
width: 100%;
padding: 60px 20px;
display: flex;
flex-direction: column;
justify-content: center;
align-items: center;
min-height: 300px;
}
.recommend-loading-text {
color: var(--primary-medium);
font-size: 15px;
margin-bottom: 24px;
text-align: center;
}
.recommend-spinner {
width: 36px;
height: 36px;
border: 3px solid var(--primary-low);
border-top: 3px solid var(--primary-medium);
border-radius: 50%;
animation: spin 0.8s linear infinite;
}
@keyframes spin {
0% { transform: rotate(0deg); }
100% { transform: rotate(360deg); }
}
.manus-score-badge {
font-size: 0.75em;
color: var(--tertiary);
margin-left: 8px;
padding: 2px 6px;
background: var(--tertiary-very-low);
border-radius: 4px;
font-weight: 500;
transition: all 0.3s ease;
}
.manus-score-badge.calculating {
color: var(--primary-medium);
background: var(--primary-very-low);
animation: pulse 1.5s ease-in-out infinite;
}
@keyframes pulse {
0%, 100% { opacity: 1; }
50% { opacity: 0.5; }
}
.manus-score-loading {
font-size: 0.75em;
color: var(--primary-medium);
margin-left: 8px;
}
.recommend-full-overlay {
position: absolute;
top: 0;
left: 0;
right: 0;
bottom: 0;
background: var(--secondary);
z-index: 100;
min-height: 500px;
}
.recommend-loading-row {
position: relative;
z-index: 101;
}
`);
// ========== 主题AI评分缓存函数 ==========
function getTopicScoreCache() {
return GM_getValue('topic_ai_scores_cache', {});
}
function setTopicScoreCache(topicId, aiScore) {
const cache = getTopicScoreCache();
cache[topicId] = { score: aiScore, time: Date.now() };
GM_setValue('topic_ai_scores_cache', cache);
}
function getCachedTopicScore(topicId) {
const cache = getTopicScoreCache();
const entry = cache[topicId];
if (entry && (Date.now() - entry.time < CONFIG.TOPIC_SCORE_CACHE_TTL)) {
return entry.score;
}
return null;
}
function cleanExpiredCache() {
const cache = getTopicScoreCache();
const now = Date.now();
let cleaned = false;
for (const [id, entry] of Object.entries(cache)) {
if (now - entry.time > CONFIG.TOPIC_SCORE_CACHE_TTL) {
delete cache[id];
cleaned = true;
}
}
if (cleaned) {
GM_setValue('topic_ai_scores_cache', cache);
}
}
// ========== 注入推荐标签页 ==========
function injectRecommendTab() {
if (document.querySelector('#nav-item-recommend')) return;
const navPills = document.querySelector('.nav-pills');
if (!navPills) return;
const recommendTab = document.createElement('li');
recommendTab.id = 'nav-item-recommend';
recommendTab.className = 'ember-view nav-item_recommend';
recommendTab.innerHTML = `<a href="javascript:void(0)">推荐</a>`;
const latestTab = navPills.querySelector('.nav-item_latest') ||
navPills.querySelector('[data-filter-type="latest"]')?.parentElement ||
navPills.firstChild;
navPills.insertBefore(recommendTab, latestTab);
recommendTab.addEventListener('click', async (e) => {
e.preventDefault();
e.stopPropagation();
if (isLoading) return;
isRecommendMode = true;
document.body.classList.add('recommend-mode-active');
navPills.querySelectorAll('li').forEach(li => {
li.classList.remove('active');
li.querySelector('a')?.classList.remove('active');
});
recommendTab.classList.add('active');
cleanExpiredCache();
showLoading(true);
await startRecommendation();
showLoading(false);
sortAndDisplayRows();
});
navPills.querySelectorAll('li:not(#nav-item-recommend)').forEach(tab => {
tab.addEventListener('click', () => {
isRecommendMode = false;
document.body.classList.remove('recommend-mode-active');
recommendTab.classList.remove('active');
document.querySelectorAll('.manus-score-badge').forEach(b => b.remove());
document.querySelectorAll('.manus-score-loading').forEach(b => b.remove());
});
});
window.addEventListener('popstate', () => {
if (isRecommendMode) {
isRecommendMode = false;
document.body.classList.remove('recommend-mode-active');
recommendTab.classList.remove('active');
}
});
}
// ========== 加载提示 ==========
let originalTableContent = null;
function showLoading(show, text = '正在融合 X 算法与 DeepSeek AI推荐内容...') {
isLoading = show;
const topicListContainer = document.querySelector('.topic-list-container') ||
document.querySelector('.topic-list')?.parentElement ||
document.querySelector('.topic-list');
const tbody = document.querySelector('.topic-list tbody');
if (!topicListContainer) return;
if (show) {
if (!originalTableContent && tbody) {
originalTableContent = tbody.innerHTML;
}
if (tbody) {
tbody.innerHTML = `
<tr class="recommend-loading-row">
<td colspan="100%">
<div class="recommend-loading-container">
<div class="recommend-loading-text">${text}</div>
<div class="recommend-spinner"></div>
</div>
</td>
</tr>
`;
}
topicListContainer.style.position = 'relative';
let overlay = topicListContainer.querySelector('.recommend-full-overlay');
if (!overlay) {
overlay = document.createElement('div');
overlay.className = 'recommend-full-overlay';
topicListContainer.appendChild(overlay);
}
} else {
topicListContainer.querySelector('.recommend-full-overlay')?.remove();
if (originalTableContent && tbody) {
tbody.innerHTML = originalTableContent;
originalTableContent = null;
}
}
}
// ========== 提取标题的辅助函数 ==========
function extractTitles(data, maxCount) {
if (!data?.user_actions) return '';
const titles = [...new Set(
data.user_actions
.filter(a => a.title)
.map(a => a.title)
)].slice(0, maxCount);
return titles.length > 0 ? titles.join('\n') : '';
}
// ========== 优化:更详细的用户画像获取 ==========
async function fetchUserProfile(username) {
if (!username) {
console.log('[推荐] 未登录,使用默认画像');
return "默认";
}
const cacheKey = `user_profile_v9_${username}`;
const cached = GM_getValue(cacheKey);
if (cached && (Date.now() - cached.time < CONFIG.PROFILE_CACHE_TTL)) {
console.log(`[推荐] 用户画像(缓存):\n${cached.profile}`);
return cached.profile;
}
try {
// 获取多种用户行为数据
const [likedData, repliedData, createdData] = await Promise.all([
fetch(`/user_actions.json?username=${username}&filter=1`).then(r => r.json()).catch(() => null), // 点赞
fetch(`/user_actions.json?username=${username}&filter=5`).then(r => r.json()).catch(() => null), // 回复
fetch(`/user_actions.json?username=${username}&filter=4`).then(r => r.json()).catch(() => null), // 创建
]);
// 提取不同类型的标题
const likedTitles = extractTitles(likedData, CONFIG.MAX_LIKED_TITLES);
const repliedTitles = extractTitles(repliedData, CONFIG.MAX_REPLIED_TITLES);
const createdTitles = extractTitles(createdData, CONFIG.MAX_CREATED_TITLES);
if (!likedTitles && !repliedTitles && !createdTitles) return "默认";
// 构建更详细的分析提示词
const prompt = `你是一个专业的用户行为分析师。请基于以下用户行为数据,生成一个详细的用户画像:
**用户点赞的主题**(最能反映兴趣):
${likedTitles || '无数据'}
**用户回复过的主题**(反映参与度和专业领域):
${repliedTitles || '无数据'}
**用户创建的主题**(反映主动关注点):
${createdTitles || '无数据'}
请从以下维度分析用户画像,每个维度用一句话概括:
1. **技术兴趣**:用户关注哪些技术栈、工具或平台
2. **内容偏好**:偏好教程、讨论、资讯还是问答类内容
3. **互动习惯**:是深度参与者还是浅层浏览者
4. **专业领域**:主要专注的技术领域或行业方向
5. **阅读深度**:偏好入门级、进阶级还是专家级内容
输出格式(不要编号,直接输出5行):
技术兴趣:[分析结果]
内容偏好:[分析结果]
互动习惯:[分析结果]
专业领域:[分析结果]
阅读深度:[分析结果]`;
const profile = await callDeepSeek(prompt, false);
if (profile && profile.length > 0) {
GM_setValue(cacheKey, { time: Date.now(), profile: profile });
console.log(`[推荐] 用户画像:\n${profile}`);
return profile;
}
return "默认";
} catch (e) {
console.error('[推荐] 获取用户画像失败:', e);
return "默认";
}
}
// ========== 启动推荐流程 ==========
async function startRecommendation() {
try {
const currentUser = getCurrentUserInfo();
if (!userProfile) {
userProfile = await fetchUserProfile(currentUser?.username);
}
const response = await fetch('/latest.json');
const data = await response.json();
const topics = data.topic_list.topics;
topics.forEach(t => {
allTopicsData[t.id] = t;
});
const uncachedTopics = [];
const xScoresRaw = {};
const aiScoresMap = {};
topics.forEach(topic => {
xScoresRaw[topic.id] = calculateXScore(topic);
const cachedScore = getCachedTopicScore(topic.id);
if (cachedScore !== null) {
aiScoresMap[topic.id] = cachedScore;
} else {
uncachedTopics.push(topic);
}
});
if (uncachedTopics.length > 0) {
await batchScoreTopics(uncachedTopics, aiScoresMap);
}
calculateFinalScores(topics, xScoresRaw, aiScoresMap);
} catch (e) {
console.error('[推荐] 推荐流程失败:', e);
}
}
// ========== 批量评分主题 ==========
async function batchScoreTopics(topics, aiScoresMap) {
for (let i = 0; i < topics.length; i += CONFIG.MAX_TOPICS_PER_BATCH) {
const batch = topics.slice(i, i + CONFIG.MAX_TOPICS_PER_BATCH);
const aiScores = await getAIScoresForBatch(batch);
batch.forEach(topic => {
const aiScore = aiScores[topic.id] || 5;
setTopicScoreCache(topic.id, aiScore);
aiScoresMap[topic.id] = aiScore;
});
}
}
// ========== 优化:更精准的批量主题评分 ==========
async function getAIScoresForBatch(topics) {
const topicList = topics.map((t, idx) =>
`${idx + 1}. [ID:${t.id}] ${t.title}`
).join('\n');
const prompt = `你是一个内容推荐专家。请基于用户画像,为以下主题打分。
**用户画像**:
${userProfile}
**待评分主题**:
${topicList}
**评分标准**(0-10分):
- **9-10分**:与用户画像高度匹配,用户极可能感兴趣
- **7-8分**:与用户画像较匹配,用户很可能感兴趣
- **5-6分**:与用户画像部分匹配,用户可能感兴趣
- **3-4分**:与用户画像关联较弱,用户不太可能感兴趣
- **0-2分**:与用户画像无关或相反,用户不感兴趣
**评分考虑因素**:
1. 主题内容与用户技术兴趣的匹配度
2. 主题类型与用户内容偏好的一致性
3. 主题深度与用户阅读深度的适配性
4. 主题领域与用户专业领域的相关性
请返回JSON格式,键为主题ID(纯数字),值为评分(0-10的数字)。
示例:{"123": 8.5, "456": 5.0}
只返回JSON,不要其他文字。`;
const scores = await callDeepSeek(prompt, true);
// 清洗和验证评分
const cleanedScores = {};
for (const [id, score] of Object.entries(scores)) {
const numId = parseInt(id, 10);
const numScore = parseFloat(score);
if (!isNaN(numId) && !isNaN(numScore) && numScore >= 0 && numScore <= 10) {
cleanedScores[numId] = Math.round(numScore * 10) / 10;
}
}
return cleanedScores;
}
// ========== 优化:更稳健的最终评分计算 ==========
function calculateFinalScores(topics, xScoresRaw, aiScoresMap) {
const xScores = Object.values(xScoresRaw);
if (xScores.length === 0) return;
// 使用分位数归一化,避免极端值影响
const sortedX = [...xScores].sort((a, b) => a - b);
const p5 = sortedX[Math.floor(sortedX.length * 0.05)]; // 5%分位数
const p95 = sortedX[Math.floor(sortedX.length * 0.95)]; // 95%分位数
const rangeX = p95 - p5;
topics.forEach(topic => {
const id = topic.id;
let xScoreNormalized;
if (rangeX === 0) {
xScoreNormalized = CONFIG.X_SCORE_MAX / 2;
} else {
// 限制在 p5 到 p95 范围内
const clampedX = Math.max(p5, Math.min(p95, xScoresRaw[id]));
xScoreNormalized = ((clampedX - p5) / rangeX) * CONFIG.X_SCORE_MAX;
}
const aiScore = aiScoresMap[id] || 5;
const aiScoreNormalized = (aiScore / 10) * CONFIG.AI_SCORE_MAX;
// 最终评分:X算法(45%) + AI评分(55%)
const finalScore = xScoreNormalized + aiScoreNormalized;
scoreMap[id] = Math.round(finalScore * 10) / 10;
});
}
// ========== 计算新主题的最终评分 ==========
function calculateFinalScoresForNew(topicIds, xScoresRaw, aiScoresMap) {
const allXScores = Object.values(scoreMap).length > 0
? [...Object.values(xScoresRaw), ...Object.keys(allTopicsData).map(id => calculateXScore(allTopicsData[id]))]
: Object.values(xScoresRaw);
if (allXScores.length === 0) return;
const sortedX = [...allXScores].sort((a, b) => a - b);
const p5 = sortedX[Math.floor(sortedX.length * 0.05)];
const p95 = sortedX[Math.floor(sortedX.length * 0.95)];
const rangeX = p95 - p5;
topicIds.forEach(id => {
if (xScoresRaw[id] === undefined) return;
let xScoreNormalized;
if (rangeX === 0) {
xScoreNormalized = CONFIG.X_SCORE_MAX / 2;
} else {
const clampedX = Math.max(p5, Math.min(p95, xScoresRaw[id]));
xScoreNormalized = ((clampedX - p5) / rangeX) * CONFIG.X_SCORE_MAX;
}
const aiScore = aiScoresMap[id] || 5;
const aiScoreNormalized = (aiScore / 10) * CONFIG.AI_SCORE_MAX;
const finalScore = xScoreNormalized + aiScoreNormalized;
scoreMap[id] = Math.round(finalScore * 10) / 10;
});
}
// ========== 处理新加载的主题(滚动加载) ==========
async function processNewTopics(newRows) {
if (!isRecommendMode || isProcessingNewTopics) return;
isProcessingNewTopics = true;
try {
const newTopicIds = [];
newRows.forEach(row => {
const id = row.getAttribute('data-topic-id');
if (id && !scoreMap[id]) {
newTopicIds.push(id);
}
});
if (newTopicIds.length === 0) {
isProcessingNewTopics = false;
return;
}
newTopicIds.forEach(id => {
const row = document.querySelector(`tr[data-topic-id="${id}"]`);
if (row) {
addCalculatingBadge(row);
}
});
const uncachedTopics = [];
const xScoresRaw = {};
const aiScoresMap = {};
for (const id of newTopicIds) {
const topicData = allTopicsData[id] || await fetchTopicData(id);
if (!topicData) continue;
allTopicsData[id] = topicData;
xScoresRaw[id] = calculateXScore(topicData);
const cachedScore = getCachedTopicScore(id);
if (cachedScore !== null) {
aiScoresMap[id] = cachedScore;
} else {
uncachedTopics.push(topicData);
}
}
if (uncachedTopics.length > 0) {
await batchScoreTopics(uncachedTopics, aiScoresMap);
}
calculateFinalScoresForNew(newTopicIds, xScoresRaw, aiScoresMap);
updateRowBadges();
} catch (e) {
console.error('[推荐] 处理新主题失败:', e);
}
isProcessingNewTopics = false;
}
// ========== 获取单个主题数据 ==========
async function fetchTopicData(topicId) {
try {
const row = document.querySelector(`tr[data-topic-id="${topicId}"]`);
if (row) {
const title = row.querySelector('.title')?.textContent?.trim() || '';
const replies = parseInt(row.querySelector('.posts')?.textContent) || 0;
const views = parseInt(row.querySelector('.views')?.textContent?.replace(/[k,]/gi, '')) || 0;
const likes = parseInt(row.querySelector('.likes')?.textContent) || 0;
return {
id: topicId,
title: title,
posts_count: replies,
views: views,
like_count: likes,
created_at: new Date().toISOString(),
pinned: row.classList.contains('pinned')
};
}
return null;
} catch (e) {
return null;
}
}
// ========== 排序并显示 ==========
function sortAndDisplayRows() {
if (!isRecommendMode) return;
const tbody = document.querySelector('.topic-list tbody');
if (!tbody) return;
const rows = Array.from(tbody.querySelectorAll('tr.topic-list-item'));
rows.sort((a, b) => {
const idA = a.getAttribute('data-topic-id');
const idB = b.getAttribute('data-topic-id');
const scoreA = scoreMap[idA] || 0;
const scoreB = scoreMap[idB] || 0;
return scoreB - scoreA;
});
let hiddenCount = 0;
rows.forEach(row => {
const id = row.getAttribute('data-topic-id');
const score = scoreMap[id];
if (score === undefined) {
row.style.display = '';
addCalculatingBadge(row);
} else if (score < CONFIG.MIN_DISPLAY_SCORE) {
row.style.display = 'none';
hiddenCount++;
} else {
row.style.display = '';
addScoreBadge(row);
}
tbody.appendChild(row);
});
}
// ========== 更新所有行的徽章 ==========
function updateRowBadges() {
if (!isRecommendMode) return;
const rows = document.querySelectorAll('tr.topic-list-item');
rows.forEach(row => {
const id = row.getAttribute('data-topic-id');
const score = scoreMap[id];
if (score === undefined) {
addCalculatingBadge(row);
} else if (score < CONFIG.MIN_DISPLAY_SCORE) {
row.style.display = 'none';
} else {
row.style.display = '';
addScoreBadge(row);
}
});
}
// ========== 添加评分徽章 ==========
function addScoreBadge(row) {
const id = row.getAttribute('data-topic-id');
const score = scoreMap[id];
row.querySelector('.manus-score-loading')?.remove();
if (score !== undefined) {
let badge = row.querySelector('.manus-score-badge');
if (!badge) {
badge = document.createElement('span');
badge.className = 'manus-score-badge';
const titleContainer = row.querySelector('.link-top-line') ||
row.querySelector('.title')?.parentElement ||
row.querySelector('.main-link') ||
row.querySelector('td:first-child');
if (titleContainer) {
titleContainer.appendChild(badge);
}
}
if (badge) {
badge.textContent = `🔥 ${score.toFixed(1)}`;
badge.classList.remove('calculating');
}
}
}
// ========== 添加"计算中"徽章 ==========
function addCalculatingBadge(row) {
const id = row.getAttribute('data-topic-id');
if (scoreMap[id] !== undefined) return;
let badge = row.querySelector('.manus-score-badge');
if (!badge) {
badge = document.createElement('span');
badge.className = 'manus-score-badge calculating';
const titleContainer = row.querySelector('.link-top-line') ||
row.querySelector('.title')?.parentElement ||
row.querySelector('.main-link') ||
row.querySelector('td:first-child');
if (titleContainer) {
titleContainer.appendChild(badge);
}
}
if (badge) {
badge.textContent = '⏳ 计算中...';
badge.classList.add('calculating');
}
}
// ========== 优化:改进 JSON 清洗逻辑 ==========
function cleanJsonResponse(content) {
if (!content) return content;
let cleaned = content.trim();
// 移除 Markdown 代码块标记
cleaned = cleaned.replace(/^```(?:json)?\s*/i, '').replace(/```\s*$/i, '');
// 移除可能的文字说明
const jsonMatch = cleaned.match(/\{[\s\S]*\}/);
if (jsonMatch) {
cleaned = jsonMatch[0];
}
return cleaned.trim();
}
// ========== API 调用 ==========
async function callDeepSeek(prompt, isJson = true, retryCount = 0) {
return new Promise((resolve) => {
GM_xmlhttpRequest({
method: "POST",
url: API_URL,
headers: {
"Content-Type": "application/json",
"Authorization": `Bearer ${API_KEY}`
},
data: JSON.stringify({
model: MODEL,
messages: [{ role: "user", content: prompt }],
temperature: 0.3,
max_tokens: 1000
}),
timeout: 30000,
onload: (res) => {
try {
if (res.status >= 200 && res.status < 300) {
let content = JSON.parse(res.responseText).choices[0].message.content;
if (isJson) {
content = cleanJsonResponse(content);
resolve(JSON.parse(content));
} else {
resolve(content);
}
} else {
throw new Error(`HTTP ${res.status}`);
}
} catch(e) {
console.error('[推荐] API 响应解析失败:', e);
if (retryCount < CONFIG.API_RETRY_COUNT) {
setTimeout(() => {
callDeepSeek(prompt, isJson, retryCount + 1).then(resolve);
}, CONFIG.API_RETRY_DELAY);
} else {
resolve(isJson ? {} : "");
}
}
},
onerror: (err) => {
console.error('[推荐] API 调用失败:', err);
if (retryCount < CONFIG.API_RETRY_COUNT) {
setTimeout(() => {
callDeepSeek(prompt, isJson, retryCount + 1).then(resolve);
}, CONFIG.API_RETRY_DELAY);
} else {
resolve(isJson ? {} : "");
}
},
ontimeout: () => {
console.error('[推荐] API 调用超时');
if (retryCount < CONFIG.API_RETRY_COUNT) {
setTimeout(() => {
callDeepSeek(prompt, isJson, retryCount + 1).then(resolve);
}, CONFIG.API_RETRY_DELAY);
} else {
resolve(isJson ? {} : "");
}
}
});
});
}
// ========== 优化:更智能的 X 算法评分 ==========
function calculateXScore(topic) {
const now = new Date();
const created = new Date(topic.created_at);
const hoursOld = Math.max(0, (now - created) / (1000 * 60 * 60));
// 基础互动评分
const likeScore = (topic.like_count || 0) * CONFIG.WEIGHT_LIKES;
const replyScore = (topic.posts_count || 0) * CONFIG.WEIGHT_REPLIES;
const viewScore = (topic.views || 0) * CONFIG.WEIGHT_VIEWS;
// 计算互动率加成(高互动率的内容质量更高)
const views = topic.views || 1;
const engagementRate = ((topic.like_count || 0) + (topic.posts_count || 0)) / views;
const engagementBoost = 1 + Math.min(engagementRate * 10, 2); // 最多2倍加成
let score = (likeScore + replyScore + viewScore) * engagementBoost;
// 置顶加成
if (topic.pinned) {
score *= CONFIG.PINNED_BOOST;
}
// 时间衰减(新鲜度)
const timeFactor = Math.pow(hoursOld + CONFIG.TIME_DECAY_OFFSET, CONFIG.TIME_DECAY_FACTOR);
return score / timeFactor;
}
// ========== 获取当前用户信息 ==========
function getCurrentUserInfo() {
try {
// 方法 1: Discourse 容器
const container = window.Discourse?.__container__;
if (container) {
const currentUser = container.lookup('service:current-user');
if (currentUser?.username) {
return {
username: currentUser.username,
id: currentUser.id,
name: currentUser.name,
trust_level: currentUser.trust_level
};
}
}
// 方法 2: User.current()
if (window.User?.current?.()?.username) {
const user = window.User.current();
return { username: user.username, id: user.id };
}
// 方法 3: #current-user
const userLink = document.querySelector('#current-user a[data-user-card]');
if (userLink) {
return { username: userLink.getAttribute('data-user-card') };
}
// 方法 4: header
const headerUser = document.querySelector('.header-dropdown-toggle.current-user button');
if (headerUser) {
const img = headerUser.querySelector('img');
if (img?.alt) {
return { username: img.alt };
}
}
// 方法 5: d-header
const anyUserCard = document.querySelector('.d-header [data-user-card]');
if (anyUserCard) {
return { username: anyUserCard.getAttribute('data-user-card') };
}
// 方法 6: preload 数据
const preloadData = document.querySelector('#data-preloaded');
if (preloadData) {
try {
const data = JSON.parse(preloadData.dataset.preloaded || '{}');
const currentUser = JSON.parse(data.currentUser || '{}');
if (currentUser.username) {
return { username: currentUser.username };
}
} catch (e) {}
}
return null;
} catch (e) {
return null;
}
}
// ========== 监听DOM变化 ==========
const listObserver = new MutationObserver((mutations) => {
if (!isRecommendMode || isLoading) return;
const newRows = [];
mutations.forEach(m => {
m.addedNodes.forEach(node => {
if (node.nodeType === 1) {
if (node.classList?.contains('topic-list-item')) {
newRows.push(node);
} else if (node.querySelectorAll) {
node.querySelectorAll('.topic-list-item').forEach(row => newRows.push(row));
}
}
});
});
if (newRows.length > 0) {
newRows.forEach(row => {
const id = row.getAttribute('data-topic-id');
if (id && scoreMap[id] === undefined) {
addCalculatingBadge(row);
} else if (scoreMap[id] !== undefined) {
if (scoreMap[id] >= CONFIG.MIN_DISPLAY_SCORE) {
addScoreBadge(row);
} else {
row.style.display = 'none';
}
}
});
clearTimeout(sortTimeout);
sortTimeout = setTimeout(() => processNewTopics(newRows), 500);
}
});
const navObserver = new MutationObserver(() => {
injectRecommendTab();
const tbody = document.querySelector('.topic-list tbody');
if (tbody && !tbody.dataset.observing) {
tbody.dataset.observing = 'true';
listObserver.observe(tbody, { childList: true });
}
});
// ========== 启动脚本 ==========
navObserver.observe(document.body, { childList: true, subtree: true });
injectRecommendTab();
console.log('[推荐系统] 已加载 - 融合 X 算法与 DeepSeek AI');
})();
以下是在discourse论坛的效果:


