Benutzer-Dashboard-Bericht Referenzhandbuch

:bookmark: This is a reference guide for describing how the Admin Dashboard Reports function, the data they’re displaying, the corresponding Data Explorer SQL queries, and where to find the Ruby code for each report.

:person_raising_hand: Required user level: Staff

Discourse contains several built-in admin dashboard Reports that can be useful for exploring stats about a community. To access these reports, you can visit discourse.example.com/admin/dashboard/reports on your site ( or click the Reports link at the top of the dashboard). Note that only staff users will have access to these reports.

Data from all users on a site is included in these reports (including staff activity like visiting admin pages). The only condition that is put on users in the reports is that they are ‘real’ users, which is used to exclude the system user from the reports.

Plugins can also add reports to the dashboard with add_report(name, &block).

:gem: Ruby models for most reports are located at: discourse/app/models/concerns/reports/. Some reports also reference: discourse/app/models/report.rb

:bulb: The dashboard-sql topics contain all of the corresponding SQL queries that can be used to generate reports identical to the Admin Dashboard Reports. These queries can be used within the Data Explorer plugin and for Running Data Explorer queries with the Discourse API

Accepted solutions

Displays daily tally of posts marked as solutions.

Ruby code: discourse-solved/plugin.rb at main · discourse/discourse-solved · GitHub

SQL Query: Dashboard Report - Accepted Solutions

Admin Logins

List of admin login times with locations.

Ruby Code: discourse/app/models/concerns/reports/staff_logins.rb

SQL Query: Dashboard Report - Admin Logins

Anonymous

Number of new pageviews by visitors not logged in to an account.

Ruby Code: discourse/app/models/concerns/reports/consolidated_page_views.rb

SQL Query: Dashboard Report - Anonymous

Bookmarks

Number of new topics and posts bookmarked.

Ruby Code: discourse/app/models/concerns/reports/bookmarks.rb

SQL Query: Dashboard Report - Bookmarks

Consolidated API Requests

API usage statistics by date, tracking both regular API requests and user API requests.

Ruby Code: discourse/app/models/concerns/reports/consolidated_api_requests.rb at main · discourse/discourse · GitHub

SQL Query: Dashboard Report - Consolidated API Requests

Consolidated Pageviews

Pageviews for logged in users, anonymous users and crawlers.

Ruby Code: discourse/app/models/concerns/reports/consolidated_page_views.rb

SQL Query: Dashboard Report - Consolidated Pageviews

Consolidated Pageviews with Browser Detection (Experimental)

Pageviews for logged in users, anonymous users, known crawlers and other. This experimental report ensures logged-in/anon requests are coming from real browsers before counting them.

Ruby Code: discourse/app/models/concerns/reports/consolidated_page_views_browser_detection.rb

SQL Query: Dashboard Report - Consolidated Pageviews with Browser Detection

DAU/MAU

Number of members that logged in in the last day divided by number of members that logged in in the last month – returns a % which indicates community ‘stickiness’. Aim for >20%.

Ruby Code: discourse/app/models/concerns/reports/dau_by_mau.rb

SQL Query: Dashboard Report - DAU/MAU

Daily Engaged Users

Number of users that have liked or posted in the last day.

Ruby Code: discourse/app/models/concerns/reports/daily_engaged_users.rb

SQL Query: Dashboard Report - Daily Engaged Users

Emails Sent

Number of new emails sent.

Ruby Code: discourse/app/models/concerns/reports/emails.rb

SQL Query: Dashboard Report - Emails Sent

Flags

Number of new flags.

Ruby Code: discourse/app/models/concerns/reports/flags.rb

SQL Query: Dashboard Report - Flags

Flags Status

List of flags’ statuses including type of flag, poster, flagger, and time to resolution.

Ruby Code: discourse/app/models/concerns/reports/flags_status.rb

SQL Query: Dashboard Report - Flags Status

Likes

Number of new likes.

Ruby Code: discourse/app/models/concerns/reports/likes.rb

SQL Query: Dashboard Report - Likes

Logged In

Number of new pageviews from logged in users.

Ruby Code: discourse/app/controllers/admin/reports_controller.rb#L5

SQL Query: Dashboard Report - Logged In

Moderator Activity

List of moderator activity including flags reviewed, reading time, topics created, posts created, personal messages created, and revisions.

SQL Query: Dashboard Report - Moderator Activity

Moderator Warning

Number of warnings sent by personal messages from moderators.

Ruby Code: discourse/app/models/concerns/reports/moderator_warning_private_messages.rb

SQL Query: Dashboard Report - Moderator Warnings

New Contributors

Number of users who made their first post during this period.

Ruby Code: discourse/app/models/concerns/reports/new_contributors.rb

SQL Query: Dashboard Report - New Contributors

Notify Moderators

Number of times moderators have been privately notified by a flag.

Ruby Code: discourse/app/models/concerns/reports/notify_moderators_private_messages.rb

SQL Query: Dashboard Report - Notify Moderators

Notify User

Number of times users have been privately notified by a flag.

Ruby Code: discourse/app/models/concerns/reports/notify_user_private_messages.rb

SQL Query: Dashboard Report - Notify User

Overall Sentiment

Number of posts classified either positive or negative with the “Sentiment” AI, over a specified period.

Ruby Code: discourse-ai/lib/sentiment/entry_point.rb at main · discourse/discourse-ai · GitHub

SQL Query: Dashboard Report - Overall Sentiment

Pageviews

Number of new pageviews from all visitors. Same as the total for Consolidated Pageviews.

Discourse uses the follow query to determine total pageviews:

SQL Query: Dashboard Report - Consolidated Pageviews

Post Edits

Number of new post edits.

Ruby Code: discourse/app/models/concerns/reports/post_edits.rb

SQL Query: Dashboard Report - Post Edits

Posts

New posts created during the selected time period

Ruby Code: discourse/app/models/concerns/reports/posts.rb

SQL Query: Dashboard Report - Posts

Post Emotion

Number of posts classified by AI with one of following emotions: Sadness, Surprise, Fear, Anger, Joy, Disgust - group by poster trust level, over a specified period.

Ruby Code: discourse-ai/lib/sentiment/entry_point.rb at main · discourse/discourse-ai · GitHub

SQL Query: Dashboard Report - Post Emotion

Reactions

List most recent reactions.

Ruby code: discourse-reactions/plugin.rb at main · discourse/discourse-reactions · GitHub

SQL Query: Dashboard Report - Reactions

Signups

New account registrations for this period.

Ruby Code: discourse/app/models/concerns/reports/signups.rb

SQL Query: Dashboard Report - Signups

Site Traffic

Ruby Code: discourse/app/models/concerns/reports/site_traffic.rb

SQL Query: Dashboard Report - Site Traffic

Suspicious Logins

Details of new logins that differ suspiciously from previous logins.

Ruby Code: discourse/app/models/concerns/reports/suspicious_logins.rb

SQL Query: Dashboard Report - Suspicious Logins

System

Number of personal messages sent automatically by the System.

Ruby Code: discourse/app/models/concerns/reports/system_private_messages.rb

SQL Query: Dashboard Report - System

Time to first response

Average time (in hours) of the first response to new topics.

Ruby Code: discourse/app/models/concerns/reports/time_to_first_response.rb + discourse/discourse/blob/main/app/models/topic.rb#L1799-L1844

SQL Query: Dashboard Report - Time to First Response

Top Ignored / Muted Users

Users who have been muted and/or ignored by many other users.

Ruby Code: discourse/app/models/concerns/reports/top_ignored_users.rb

SQL Query: Dashboard Report - Top Ignored / Muted Users

Top Referred Topics

Topics that have received the most clicks from external sources.

Ruby Code: discourse/app/models/concerns/reports/top_referred_topics.rb

SQL Query: Dashboard Report - Top Referred Topics

Top Referrers

Users listed by number of clicks on links they have shared.

Ruby Code: discourse/app/models/concerns/reports/top_referrers.rb

SQL Query: Dashboard Report - Top Referrers

Top Traffic Sources

External sources that have linked to this site the most.

Ruby Code: discourse/app/models/concerns/reports/top_traffic_sources.rb

SQL Query: Dashboard Report - Top Traffic Sources

Top Uploads

List all uploads by extension, filesize and author.

Ruby Code: discourse/app/models/concerns/reports/top_uploads.rb

SQL Query: Dashboard Report - Top Uploads

Top Users by likes received

Top 10 users who have received likes.

Ruby Code: discourse/app/models/concerns/reports/top_users_by_likes_received.rb

SQL Query: Dashboard Report - Top Users by Likes Received

Top Users by likes received from a user with a lower trust level

Top 10 users in a higher trust level being liked by people in a lower trust level.

Ruby Code: discourse/app/models/concerns/reports/top_users_by_likes_received_from_inferior_trust_level.rb

SQL Query: Dashboard Report - Top Users by Likes Received from a User with a Lower Trust Level

Top Users by likes received from a variety of people

Top 10 users who have had likes from a wide range of people.

Ruby Code: discourse/app/models/concerns/reports/top_users_by_likes_received_from_a_variety_of_people.rb

SQL Query: Dashboard Report - Top Users by Likes Received From a Variety of People

Topics

New topics created during this period.

Ruby Code: discourse/app/models/concerns/reports/topics.rb

SQL Query: Dashboard Report - Topics

Topics with no response

Number of new topics created that did not receive a response.

Ruby Code: discourse/app/models/concerns/reports/topics_with_no_response.rb

SQL Query: Dashboard Report - Topics with No Response

Topic View Stats

Ruby Code: discourse/app/models/concerns/reports/topic_view_stats.rb

SQL Query: Dashboard Report - Topic View Stats

Trending Search Terms

Most popular search terms with their click-through rates.

Ruby Code: discourse/app/models/concerns/reports/trending_search.rb

SQL Query: Dashboard Report - Trending Search Terms

Trust Level growth

Number of users who increased their Trust Level during this period.

The Trust Level Growth report is pulling data from the user_histories table in the Discourse database. Specifically, this report is counting the number of times a user_histories.action is recorded for an increase in a user trust level.

Ruby Code: discourse/app/models/concerns/reports/trust_level_growth.rb

SQL Query: Dashboard Report - Trust Level Growth

Unaccepted policies

This dashboard report identifies topics with policies that have not been accepted by certain users.

Ruby code: discourse-policy/plugin.rb at main · discourse/discourse-policy · GitHub

SQL Query: Dashboard Report - Unaccepted Policies

User Flagging Ratio

List of users ordered by ratio of staff response to their flags (disagreed to agreed).

Ruby Code: discourse/app/models/concerns/reports/user_flagging_ratio.rb

SQL Query: Dashboard Report - User Flagging Ratio

User notes

List most recent user notes.

Ruby code: discourse-user-notes/plugin.rb at main · discourse/discourse-user-notes · GitHub

SQL Query: Dashboard Report - User Notes

User Profile Views

Total new views of user profiles.

Ruby Code: discourse/app/models/concerns/reports/profile_views.rb

SQL Query: Dashboard Report - User Profile Views

User Visits

The total number of logged-in user visits in the forum for the selected time period (today, yesterday, last 7 days, etc).

A User Visit is counted anytime a unique logged in user visits the site, up to once per day. For example, if a user visited a site every day within a week, Discourse would count that as 7 user visits.

Ruby Code: discourse/app/models/concerns/reports/visits.rb

SQL Query: Dashboard Report - User Visits

User Visits (mobile)

Number of unique logged-in users who visited using a mobile device.

Ruby Code: discourse/app/models/concerns/reports/mobile_visits.rb

SQL Query: Dashboard Report - User Visits

User-to-User (excluding replies)

Number of newly initiated personal messages.

Ruby Code: discourse/app/models/concerns/reports/user_to_user_private_messages.rb

SQL Query: Dashboard Report - User-to-User

User-to-User (with replies)

Number of all new personal messages and responses.

Ruby Code: discourse/app/models/concerns/reports/user_to_user_private_messages_with_replies.rb

SQL Query: Dashboard Report - User-to-User

Users per Trust Level

Number of users grouped by trust level.

Ruby Code: discourse/app/models/concerns/reports/users_by_trust_level.rb

SQL Query: Dashboard Report - Users Per Trust Level

Users per Type

Number of users grouped by admin, moderator, suspended, and silenced.

Ruby Code: discourse/app/models/concerns/reports/users_by_type.rb

SQL Query: Dashboard Report - Users Per Type

Web Crawler Pageviews

Total pageviews from web crawlers over time.

Ruby Code: discourse/app/models/report.rb

SQL Query: Dashboard Report - Web Crawler Pageviews

Web Crawler User Agents

List of web crawler user agents, sorted by pageviews.

Ruby Code: discourse/app/models/concerns/reports/web_crawlers.rb

SQL Query: Dashboard Report - Web Crawler User Agents

Last edited by @SaraDev 2025-10-15T20:49:23Z

Last checked by @SaraDev 2025-01-28T21:42:37Z

Check documentPerform check on document:
17 „Gefällt mir“

Ich sehe keinen Link dazu unter /admin. Überlese ich etwas? Es scheint, dass dies leichter auffindbar sein sollte. Ich glaube, ich wusste, dass diese Berichte hier waren, habe aber gesucht und sie nicht gefunden.

Obwohl es nur wenige Minuten gedauert hat, sie zu finden, wäre es vielleicht schön, etwas wie Folgendes hinzuzufügen:

3 „Gefällt mir“

Ja, es wäre vielleicht nett, in einer PM an das Personal sie zu erwähnen, wenn eine Website zum ersten Mal erstellt wird. :thinking:

1 „Gefällt mir“

:crying_cat_face:

Entschuldigung. Ich dachte wirklich, ich hätte es schon einmal irgendwo gesehen.

Man kann die Leute einfach nicht dazu bringen, Dinge zu lesen. . . . Außer ich könnte den Quellcode lesen, um herauszufinden, wie man es in einem Plugin macht?

Aber vielleicht die obige Aktualisierung zu

Ich glaube, das hat mich wirklich verwirrt. (Aber nein, ich habe keine Entschuldigung.)

Ich habe das Thema zu einer Wiki gemacht, leg los! :+1:

2 „Gefällt mir“

Das stimmt nicht mit der Benutzeroberfläche überein (die Benutzeroberfläche verwendet 20 %), welche sollte es sein?

2 „Gefällt mir“

Guter Fang. Es wurde kürzlich auf 20 % aktualisiert. Ich werde die Änderung im OP vornehmen. :slight_smile: :+1:

2 „Gefällt mir“

Hallo @SaraDev Kann diese Berichts-Ausgabe mit einer SQL-Abfrage erzielt werden? Können Sie sie teilen?
Danke

1 „Gefällt mir“

Ja, Sie können den folgenden SQL-Bericht für Top-Traffic-Quellen verwenden:

-- [params]
-- date :start_date = 01/05/2023
-- date :end_date = 03/06/2023

WITH count_links AS (

SELECT COUNT(*) AS clicks,
       ind.name AS domain
FROM incoming_links il
  INNER JOIN posts p ON p.deleted_at ISNULL AND p.id = il.post_id
  INNER JOIN topics t ON t.deleted_at ISNULL AND t.id = p.topic_id
  INNER JOIN incoming_referers ir ON ir.id = il.incoming_referer_id
  INNER JOIN incoming_domains ind ON ind.id = ir.incoming_domain_id
WHERE t.archetype = 'regular'
  AND il.created_at::date BETWEEN :start_date AND :end_date
GROUP BY ind.name
ORDER BY clicks DESC
),

count_topics AS (

SELECT COUNT(DISTINCT p.topic_id) AS topics,
       ind.name AS domain
FROM incoming_links il
INNER JOIN posts p ON p.deleted_at ISNULL AND p.id = il.post_id
INNER JOIN topics t ON t.deleted_at ISNULL AND t.id = p.topic_id
INNER JOIN incoming_referers ir ON ir.id = il.incoming_referer_id
INNER JOIN incoming_domains ind ON ind.id = ir.incoming_domain_id
WHERE t.archetype = 'regular'
  AND il.created_at > (CURRENT_TIMESTAMP - INTERVAL '30 DAYS')
GROUP BY ind.name
)

SELECT cl.domain,
       cl.clicks AS "Klicks",
       ct.topics AS "Themen"
FROM count_links cl
JOIN count_topics ct ON cl.domain = ct.domain
LIMIT 10

Beachten Sie bei dieser Abfrage, dass die Datumsparameter Daten im Format Tag/Monat/Jahr akzeptieren.

1 „Gefällt mir“

Hallo @SaraDev, vielen Dank für das Teilen der Abfrage.
Eine allgemeinere Frage zu diesem Bericht und der Tabelle incoming_links – sie stellt nur den Traffic für Beitragsseiten dar und nicht den Traffic für alle Forenseiten, richtig?

Kontext: Ich möchte Trends im gesamten Forum-Traffic analysieren und hoffte, den gesamten Traffic nach Quellen aus dem Bericht „Top Traffic Sources“ zu erhalten.
Aber während der Gesamtverkehr im letzten Monat bei ~ 272.000 lag (Benutzer und Anonyme), beträgt die Gesamtzahl der Klicks im Bericht „Traffic Sources“ für denselben Zeitraum nur 59.000.
Außerdem sehe ich, dass Sie einen inneren Join mit den Tabellen topics und posts verwenden, was bedeutet, dass Sie ihn nicht zählen, wenn kein post_id mit dem Klick verknüpft ist.

Können Sie meine Schlussfolgerung bitte bestätigen und vielleicht ein wenig über die Logik hinter der Tabelle incoming_links erklären?

Hallo @SaraDev, ich habe diese Abfrage ausgeführt und das Ergebnis stimmt nicht genau mit dem Bericht „Beiträge“ im Tab „Allgemein“ überein.
Z.B. für den 30. November:
Abfrage = 112 Beiträge
Bericht = 120 Beiträge
Können Sie bitte die Lücke überprüfen?
Danke

1 „Gefällt mir“

Nur zur Information, @Yotam_Hagay – auch wenn Sara die Erstellerin ist, ist der Leitfaden die Verantwortung von jedem :slight_smile: :discourse: Es ist nicht nötig, jede Nachricht mit @ zu erwähnen. :slight_smile:

2 „Gefällt mir“

Danke @JammyDodger für die Klarstellung.
Gibt es noch jemanden, den ich markieren oder an den ich mich wenden kann, um eine Antwort zu erhalten?

1 „Gefällt mir“

Die Ergebnisse dieser Abfrage unterscheiden sich geringfügig vom Bericht „Zeit bis zur ersten Antwort“:
Am 8. November zum Beispiel:
Abfrage: 93 Stunden
Bericht: 116 Stunden
Kann mir jemand weiterhelfen?

1 „Gefällt mir“

Ich glaube, einige davon könnten einige Zeit für die Recherche in Anspruch nehmen. Ich schaue es mir selbst an, um zu sehen, ob ich herausfinden kann, was los ist (obwohl die Lücke zwischen meinen SQL- und meinen Ruby-Kenntnissen ziemlich groß ist :slight_smile:).

Aber bringen Sie die Ergebnisse weiter, da es großartig wäre, all diese Informationen zu festigen. :+1:

2 „Gefällt mir“

Für den Beitrag denke ich, dass der Lagerbericht auch Themenbeiträge sowie Beiträge von Systembenutzern zählt, aber auch nur diejenigen mit post_type 1 (d.h. keine Whispers, kleinen Aktionsbeiträge oder Moderationsaktionen) anvisiert.

Ich denke, die SQL würde eher so aussehen:

--[params]
-- date :start_date
-- date :end_date

SELECT 
    p.created_at::date AS "Tag",
    COUNT(p.id) AS "Anzahl"
FROM posts p
INNER JOIN topics t ON t.id = p.topic_id AND t.deleted_at ISNULL
WHERE p.created_at::date BETWEEN :start_date AND :end_date
    AND p.deleted_at ISNULL
    AND t.archetype = 'regular'
    AND p.post_type = 1
GROUP BY p.created_at::date
ORDER BY 1

Könnten Sie das auf Ihrer Website ausführen und sehen, ob es übereinstimmt?

2 „Gefällt mir“

Danke Jammy, ich werde das prüfen!
Ich arbeite gerade an einer Analyse der Antwortzeit, daher wäre es toll, wenn du dir auch diese hier ansehen könntest.

1 „Gefällt mir“

Ich glaube, in der SQL-Version fehlt AND p.user_id <> t.user_id, um Antworten vom OP auszuschließen. Wenn ich das hinzufüge, erhalte ich die genaue Zeit zwischen dem OP und der ersten Antwort von jemand anderem:

--[params]
-- date :date_start
-- date :date_end

WITH first_reply AS (
    SELECT 
        p.topic_id, 
        MIN(post_number) post_number, 
        t.created_at
    FROM posts p
    INNER JOIN topics t ON (p.topic_id = t.id)
    WHERE p.deleted_at IS NULL
        AND p.user_id <> t.user_id
        AND p.post_number != 1
        AND p.post_type = 1
        AND p.user_id > 0
        AND t.user_id > 0
        AND t.deleted_at IS NULL
        AND t.archetype = 'regular'
        AND t.created_at::date BETWEEN :date_start AND :date_end
    GROUP BY p.topic_id, t.created_at
    ORDER BY 2 DESC
)

SELECT 
    p.topic_id, 
    fr.created_at::date dt_topic_created,
    (p.created_at - fr.created_at) response_time
FROM posts p
INNER JOIN first_reply fr 
    ON fr.topic_id = p.topic_id 
    AND fr.post_number = p.post_number
    AND p.created_at > fr.created_at
ORDER BY response_time

Ich glaube auch, dass der Lagerbericht in Dezimalzahlen und nicht in Stunden und Minuten wie SQL ist. Ich werde noch einmal versuchen, ihn anzupassen. :+1:


Nur ein kleines Update, um AVG einzuschließen, damit es dem Ergebnis des Lagerberichts ähnlicher ist:

--[params]
-- date :date_start
-- date :date_end

WITH first_reply AS (
    SELECT 
        p.topic_id, 
        MIN(post_number) post_number, 
        t.created_at
    FROM posts p
    INNER JOIN topics t ON p.topic_id = t.id
    WHERE p.deleted_at IS NULL
        AND p.user_id <> t.user_id
        AND p.post_type = 1
        AND p.user_id > 0
        AND t.user_id > 0
        AND t.deleted_at IS NULL
        AND t.archetype = 'regular'
        AND t.created_at::date BETWEEN :date_start AND :date_end
    GROUP BY p.topic_id, t.created_at
)

SELECT 
    fr.created_at::date dt_topic_created,
    AVG(p.created_at - fr.created_at) response_time
FROM posts p
INNER JOIN first_reply fr 
    ON fr.topic_id = p.topic_id 
    AND fr.post_number = p.post_number
    AND p.created_at > fr.created_at
GROUP BY fr.created_at::date
ORDER BY response_time

Dies scheint mit dem Lagerbericht übereinzustimmen, solange man berücksichtigt, dass das eine Dezimalzahlen und das andere HH:MM ist. Ich bin sicher, es gibt eine Möglichkeit, die SQL response_time in Dezimalzahlen umzuwandeln, aber HH:MM scheint eine intuitivere Methode zu sein. (Ich glaube, es gibt auch einige zusätzliche Kriterien, die möglicherweise nicht notwendig sind, aber auch als Schutz gegen ungewöhnliche Umstände dienen könnten, daher habe ich diese Teile letztendlich so belassen, bis ich sicher sagen kann, ob oder ob nicht :slight_smile:)

Könnten Sie diese hier ausführen und sehen, wie sie übereinstimmt?

4 „Gefällt mir“

Ja, das stimmt jetzt mit den Zahlen im Lagerbericht überein, danke!
Nur eine Anmerkung -
Ich habe festgestellt, dass die unten stehende AVG-Funktion fehlende Ergebnisse zurückgibt, falls die Zeit > 24 Stunden beträgt (ein Abschnitt für die Anzahl der Tage fehlt vermutlich).

AVG(p.created_at - fr.created_at)::time response_time

1 „Gefällt mir“

Ja, die Umwandlung in time war eine schlechte Wahl. :slight_smile: Wenn Sie ::time entfernen, wird es zur genaueren (wenn auch schwerer zu lesenden) Version zurückkehren.

Ich werde auch die obige bearbeiten. :+1:

2 „Gefällt mir“