Vous avez raison, la table user_stats est une table statique résumant les métriques à vie d’un utilisateur depuis son adhésion à Discourse.
Au lieu de cela, pour filtrer les métriques par date, comme posts_read_count et days_visited, nous devrions utiliser la table de base de données user_visits pour les posts. Nous devrions également utiliser la table topic_views pour filtrer les métriques topics_entered par date.
Les écarts que vous avez observés proviennent de l’utilisation de la table user_stats au lieu d’autres tables comme user_visits et topic_views pour filtrer ces statistiques par date.
Pour résoudre ce problème, nous pouvons mettre à jour la requête pour utiliser ces tables de base de données à la place :
Voici une version mise à jour de la requête :
Métriques de la page utilisateur
-- [params]
-- date :start_date = 2020-01-01
-- date :end_date = 2026-01-01
WITH likes_received AS (
SELECT
ua.user_id AS user_id,
COUNT(*) AS likes_received
FROM
user_actions ua
WHERE
ua.action_type = 2
AND ua.created_at BETWEEN :start_date AND :end_date
GROUP BY
ua.user_id
),
likes_given AS (
SELECT
ua.acting_user_id AS user_id,
COUNT(*) AS likes_given
FROM
user_actions ua
WHERE
ua.action_type = 1
AND ua.created_at BETWEEN :start_date AND :end_date
GROUP BY
ua.acting_user_id
),
user_metrics AS (
SELECT
tv.user_id,
COUNT(DISTINCT tv.topic_id) AS topics_viewed
FROM
topic_views tv
WHERE
tv.viewed_at BETWEEN :start_date AND :end_date
GROUP BY
tv.user_id
),
days_and_posts AS (
SELECT
uv.user_id,
COUNT(DISTINCT uv.visited_at) AS days_visited,
SUM(uv.posts_read) AS posts_read
FROM
user_visits uv
WHERE
uv.visited_at BETWEEN :start_date AND :end_date
GROUP BY
uv.user_id
),
solutions AS (
SELECT
ua.acting_user_id AS user_id,
COUNT(*) AS solutions
FROM
user_actions ua
WHERE
ua.action_type = 15
AND ua.created_at BETWEEN :start_date AND :end_date
GROUP BY
ua.acting_user_id
),
cheers AS (
SELECT
gs.user_id,
SUM(gs.score) AS cheers
FROM
gamification_scores gs
WHERE
gs.date BETWEEN :start_date AND :end_date
GROUP BY
gs.user_id
)
SELECT
u.id AS user_id,
COALESCE(lr.likes_received, 0) AS likes_received,
COALESCE(lg.likes_given, 0) AS likes_given,
COALESCE(um.topics_viewed, 0) AS topics_viewed,
COALESCE(dp.days_visited, 0) AS days_visited,
COALESCE(dp.posts_read, 0) AS posts_read,
COALESCE(sol.solutions, 0) AS solutions,
COALESCE(ch.cheers, 0) AS cheers
FROM
users u
LEFT JOIN
likes_received lr ON u.id = lr.user_id
LEFT JOIN
likes_given lg ON u.id = lg.user_id
LEFT JOIN
user_metrics um ON u.id = um.user_id
LEFT JOIN
days_and_posts dp ON u.id = dp.user_id
LEFT JOIN
solutions sol ON u.id = sol.user_id
LEFT JOIN
cheers ch ON u.id = ch.user_id
ORDER BY
u.id
Notez qu’avec cette méthode, la donnée posts_read dans la table user_visits a une distinction importante : elle ne compte pas les propres publications d’un utilisateur, tandis que les données de la table user_stats incluent les publications rédigées par l’utilisateur lui-même. Vous pourriez donc toujours trouver une différence entre ces deux statistiques dans cette requête et sur la page utilisateur.