Comparison between discourse-ai AI Bot and merefield/discourse-chatbot

What are the differences between the official Discourse AI plugin and the Discourse Chatbot 🤖 (supporting ChatGPT) plugin in terms of AI bots and their features?


@merefield plugin has been around for longer and has many more knobs to configure it. AI Bot is also a bit more ambitious (especially since we have GPT 4 access) in that we attempt to integrate it into the Discourse experience - it knows how to search and summarize topics , for example.

Notable differences as of today are probably

  • We stream replies and offer a stop button
  • @merefield offers a lot more settings to tune stuff
  • We offer a “command” framework for getting the bot to act on your behalf - albeit experience is fairly flaky on GPT 3.5
  • @merefield offers discourse chat integration atm, we do not yet
  • We offer anthropic integration as well

To add: From my tests, it looks like AI Bot only works in PM and Chatbot works everywhere, unless I’m doing something wrong with the AI bot.

Image generation and streaming are nicely done, as well as search API, however, it sometimes still falls back to “I can’t search the web or can not generate images”. Are you using something similar to LangChain agents, that decide what steps to take?

Are we supposed to create a CX with scope for the full web, or just our instance URL?

1 Like

That is correct. We will probably get to wider integration, but are taking our time here and trying to polish the existing stuff first.

Yes, this is the very frustrating thing about GPT 3.5 vs 4. Grounding the model for 3.5 is just super duper hard.

I am considering having an intermediary step prior to replying in GPT 3.5 that first triages prior to actually responding (Eg: does this interaction INTERACTION look like it should result in a !command, if so which?) It would sadly add cost and delay so this is my last resort

We use a “sort of” langchain, limited to 5 steps, but we try to be very frugal with tokens so balance is hard.

Up to you… I like having access to all of Google, it is mighty handy


What I do to ground 3.5 is adding a second, shorter system prompt lower in the final prompt to “remind” the model of some of the rules in the main system prompt.

So it would look something like (typing from phone, trying…)

system role

system role “reminder”
new user prompt

Just by repeating the most important system role contents, the model adds more weight to it. I’ve been using this workaround for a few months now without too much strange responses.

Especially if prompts are becoming longer, the model tends to “forget” things that are higher in the final prompt. Things in AI are very hacky, it’s something I experience this in GPT models and langchain as well. Just today I got such a strong personality in langchain that the actions when asking the time in a random city, were “checking my watch”, “changing the timezone of my watch” and “ask a stranger”